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Why Bubble Chambers for Dark Matter?
1. Large target masses would be possible.

• Multi ton chambers were built in the 50’s- 80’s.

2. An exciting menu of available target nuclei.

    No liquid that has been tested seriously has failed to work as a bubble
chamber liquid (Glaser, 1960).

• Most common: Hydrogen, Propane

• But also “Heavy Liquids”: Xe, Ne, CF3Br, CH3I, and CCl2F2.

• Good targets for both spin- dependent and spin-independent scattering.

• Possible to “swap” liquids to check suspicious signals.

3. Low energy thresholds are easily obtained for nuclear recoils.

•  < 10 keV easy to achieve according to standard nucleation theory.

4. Backgrounds due to environmental gamma and beta activity can be
suppressed by running at low pressure.

• This effect used for superheated droplet detectors (SIMPLE, PICASSO).



dE/dX Discrimination in a Small Propane Chamber
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Bubble Nucleation in Cracks

Liquid 0.1 µm

Solid

nucleation sites• Trapped gas volumes in surface
imperfections are now known to be the
primary source of nucleation.

• Most (all?) construction materials have
rough surfaces at scales below 1 µm, but
some materials much better than others.

• Historically, problem was overcome for
high energy physics experiments by rapid
cycling of chamber in sync with a pulsed
beam. Bubbling at walls was tolerated
because of finite speed of bubble growth.

• A few small “clean chambers” (~10 ml)
were built in the 50’s and 60’s, with
sensitive times ~1 minute.

Ways to preserve superheated state:

• Elimination of porous surfaces in
contact with superheated liquid.

• Precision cleaning to eliminate
particulates.

• Vacuum degassing.

•… a few other tricks borrowed from
chemical engineers



Prototype High-Stability Bubble Chamber 

3-way valve

Propylene glycol buffer
liquid prevents evaporation 
of superheated liquid.

Acoustic sensor

pressure
sensor

filter

gas

glycol

gas

Exhaust to Room

Compressed Air @ 140 psi

air

liquid

glycol

Quartz pressure vessel

Glass dewar with 
heat-exchange fluid

Piston

Camera
(1 of 2)



 Possible Target Liquids

Possible use in hybrid
scintillating bubble
chamber.

-108 °C3.0 g/cc100% Xe  (Z=54)Xe

Spin- dependent only.-37 °C1.4 g/cc
19% C
81% FC3F8

Spin-dependent and
spin-independent
Non- ozone depleting

-23 °C2.1
g/cc

6% C
29% F
65% I (Z=53)

CF3I

Good for spin-dependent
    and spin- independent
      couplings.

-58 °C1.5 g/cc
8% C (Z=6)
38% F (Z=9)
54% Br (Z=35)

CF3Br

Comments
Boiling
Point

@ 1 atm
DensityMass Fractions



High Speed Bubble Chamber Movie
1000 frames/ second
241Am-Be neutron source



Background Rate

• 1 event/ (15 minutes) for 18 grams of CF3Br in sub-basement lab (~6 ft. depth).

• Observed rates are consistent with measured ambient neutron flux.



COUPP test site
~300 m.w.e.

at Fermilab



Design Concept for  Large Chambers
• Central design issue is how to avoid metal contact with superheated liquid.

• Fabrication of large quartz or glass pressure vessels is not practical, but industrial
capability exists for thin-walled vessels up to ~ 1 m3 in volume.

Thin- walled quartz bell jar

Steel pressure vessel

Pressure balancing bellows
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L IQU ID
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1- Liter Detector at Fermilab

CF3I  target liquid
   1400g iodine
   600g fluorine
   100g carbon



160 msec of Video Buffer (20 msec/frame)



Triple Neutron Scatter



Muon Track @ 160 psi Superheat Pressure
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How low in rate do we have to go to be sensitive to WIMPs?

Best current limits
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Background Due to Nuclear Recoils from Alpha Decay

•  Alpha decay produces monoenergetic, low energy nuclear recoils.

For example, consider 210Po->206Pb:

206Pbα
Eα = 5.407 MeV ER= 101 keV

• The recoiling nucleus will nucleate a bubble in any chamber that is sensitive to
the lower energy (~10 keV) recoils expected from WIMP scattering.

• The 238U and 232Th decay series include many alpha emitters, including radon
(222Rn) and its daughters.

• Radon is highly soluble in bubble chamber liquids.



Backgrounds for a Large Bubble Chamber Experiment

<0.01/ton-dayDeep site with shieldingneutrons

Total Event RateAssumptions

Best Borexino CTF level
 dominated by radon decay

“Rejection factor” better than 10-9

~1/ton-day?Alphas

<0.1/ton-dayGammas & betas

• Fluid handling techniques to be adapted from Borexino solar neutrino observatory.

• Background likely to be dominated by radon and its daughters.

• These levels are ~3 orders of magnitude lower than seen in current generation dark
matter experiments.



Potential Sensitivity Of 1-Liter Chamber at Fermilab Site

Spin-independent Spin-dependent 



Conclusions

Bubble chambers might be the best instruments for detecting WIMPs, because:

• They can be built big at moderate cost.

• Virtually zero response to beta and gamma radiation.

• Low thresholds for nuclear recoils.

• Neutron backgrounds measured by counting multiple bubbles

• Wide selection of interesting target nuclei.

• Alpha backgrounds in chamber liquids can be made small.

Already 
demonstrated

To test at
Fermilab site



Tours of COUPP

4:00 PM May be 1 or 2 openings left

5:00 PM Open

Requirements: No shorts or sandals.
Meeting place: In front of registration booth. 


